前沿进展 | 激光加速强流电子束驱动高效核激发
02 研究背景
03 研究创新点
该团队使用上海交通大学激光等离子体教育部重点实验室的百太瓦激光装置(如下图所示),通过紧聚焦强激光满足等离子体密度与焦斑半径匹配条件,实现了多空泡、满负荷的尾波场电子加速,获得电荷量~20 nC、能量40 MeV、发射角100 mrad、流强100 kA的超强电子束;然后将此强流电子束轰击高原子序数的钨靶,获得高通量的超快γ射线束;最后,γ射线在铟靶中诱发光核反应(γ, n), (γ, 2n), (γ, 3n), (γ, γ´)等高效率生产了核同质异能素。例如(γ, γ´)核激发路径,实现了MeV级的高能核激发,峰值激发效率高达1.12×1015 p/s。
图 实验布局及激发态的核退激辐射谱
该激发方式的峰值效率高于传统加速器约4-5个数量级,克服了传统激发方式低密度、低流强的瓶颈。相比该团队发表于Phys. Rev. Lett. 128, 052501 (2022)的激光团簇电子共振形成的中低能段“等离子体核激发”,激光加速核激发方式可实现对更高核能级的超快泵浦。该工作作为超强束流高效激发核同质异能态的首次实验验证,开启了激光加速“强束流核激发”这种中高能段的全新核激发方式。
需要强调的是,该方法不仅适用于激光等离子体加速的超强电子束,也适用于各种离子束和辐射源。这类通用的超强核激发/核反应方式,可广泛应用于激发态寿命短至皮秒的核素,对研究核γ射线激光、理解核跃迁机制、获取核激发态极短寿命/极小截面的核数据具有重要意义。
04 总结与展望
该团队提出的以上两项工作一起构成了初步体系,以超出现有加速器/对撞机4-5个量级的峰值核激发能力,为核物理/核天体物理提供从BBN到恒星核合成、超新星爆发核合成宽广范围的超强核激发/核反应手段。这也为激光等离子体加速继等离子体加速器之后,开拓了另外一个重要的应用领域。
上海交通大学物理与天文学院冯杰助理研究员为论文第一作者。该工作得到国家自然科学基金项目、中国科学院先导项目等资助。
论文链接:
免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间联系我们,我们将协调进行处理,最终解释权归旭为光电所有。