Menu产品中心激光器飞秒超快激光Class5多光子显微成像激光Coherent飞秒超快激光器AVESTA飞秒激光器Menhir高重频低噪声飞秒Fluence飞秒光纤激光器Lithium紧凑型高功率飞秒ActiveFiber高功率飞秒光纤SolarLaser全固态飞秒Laser Quantum飞秒激光器SourceLAB超强激光等离子体Prospective多光子成像飞秒FSXCycle超快激光时间同步Amplitude超快激光器neoLASE工业超快激光Fibercryst飞秒光纤放大Chromacity超快光纤激光器IMRA超快光纤激光器Fastlite超快激光系统LaserFemto飞秒光纤激光Litilit飞秒光纤激光KMLabs超快X射线光源皮秒纳秒激光HiLASE高能量皮秒激光Passat皮秒纳秒激光器Irisiome皮秒光纤激光器FYLA超连续谱超快激光器LotisTII可调谐皮秒激光Refined可调谐皮秒激光Sirah高重频纳秒染料激光器QLI可调谐纳秒激光器Excelitas光学参量振荡器CW-OPOALS皮秒激光器PILAS可调谐激光器Santec波长可调谐激光器Radiantis超快OPO系统Stuttgart中红外OPOSuperlum扫频可调谐半导体激光器GouMax光通信测试仪表扫频激光器OCTLIGHT高速扫频激光器Axsun高速扫频激光器Optores扫频激光器光纤激光器AdValue光纤激光器NP Photonics光纤激光器Azurlight超高功率单频激光器MW Technologies光纤激光器Optromix光纤激光器Alnair Labs光纤激光器Amonics 1550nm光纤放大器Lumibird光纤激光器超连续中红外Leukos超连续谱激光器Novae中红外超短脉冲激光Femtum中红外飞秒光纤激光紫外光源CryLaS紫外激光器Oxide紫外激光器量子级联激光器Block Engineering量子级联激光Pranalytica高功率量子级联激光Alpes Lasers量子级联激光稳频激光器Stable Laser Systems稳频激光器DMF Stabiλaser超稳频激光固体半导体Excelitas二极管激光器iFLEXSkylark高功率窄线宽激光器Muquans激光冷原子测量MOGLabs半导体激光器Toptica半导体激光器Lighthouse二极管泵浦绿色激光器Aerodiode激光二极管及驱动器QPhotonics激光二极管Superlum超辐射发光二极管SLDLaser Quantum固体连续激光白光气体光源Energetiq激光驱动白光光源Plasma气体激光器Lumencor显微镜光源ISTEQ等离子体光源Synrad Firestar i401 CO2激光器Asahi氙灯光源自适应光学变形镜ALPAO自适应光学模态控制可变形镜高速可变形镜大口径高速连续变形镜波前传感器自适应闭环软件自适应光学系统OKO自适应光学可变形镜PDM MMDM波前传感器自适应光学系统Dynamic Optics自适应光学Dyoptyka散斑抑制变形镜NightN自适应光学可变形镜-超高功率激光波前传感器光学表面形貌测试仪HION斐索干涉仪RIF人眼像差仪ISP SYSTEM精密光学控制Boston自适应光学Microgate自适应光学Phaseform透射式变形镜ROBUST AO变焦反射镜波前传感器法国Phasics波前传感器波前传感器SID4波前传感器SID4-SC8s生物显微定量相位成像SID4-Bio超高真空度波前传感器SID4-VKaleo MultiWAVE多波长干涉仪Kaleo MTF测试平台PhaseView生物显微测量空间光调制器Santec空间光调制器Holoeye空间光调制器PLUTOJENOPTIK一维空间光调制器Holoeye空间光调制器GAEAHamamatsu空间光调制器ViALUX数字微镜阵列DMD干涉仪传函仪Difrotec点衍射激光干涉仪OEG光学传递函数MTFOptikos镜头检测LensCheck湍流模拟器Lexitek湍流模拟相位板SURISE热风式大气湍流模拟器SURISE液晶大气湍流模拟器光场调控器件RPC涡旋相位板ARCoptix可变螺旋板Q-PLATELC-TEC液晶高速光开光常用仪器相机CMOSXenics红外相机Allied Vision红外相机Raytrix 3D光场相机PHOTONIS相机TELOPS红外热像仪NAC高速摄像机Phantom超高速相机Hamamatsu CMOS相机NUVU背照式EMCCD相机FirstLight高速近红外EMCCDDouble Helix Optics深度相机AOS高速相机PCO科学相机Axis超快条纹相机量子信息光学Zurich量子测控Intermodulation微波合成分析QBLOX量子比特控制Swabian时间相关单光子计数Maybell稀释制冷机Basel低噪声超稳定电子设备Excelitas光子探测器UQDevices多光子计数FLIM LABS荧光寿命成像Photonscore光子计数Pi Imaging单光子相机Sparrow单光子源FEMTO低噪声放大器光纤光电器件AOS光纤布拉格光栅Gooch Housego光电器件iXblue电光调制器LUNA光纤传感通信GLOphotonics光子晶体光纤Alnair Labs光学滤波器大气天文探测Miratlas一体化大气监测仪ALCOR SYSTEM天文仪器Plair环境监测系统VOYIS海洋水下探测振镜激光调控SCANLAB扫描振镜EOPC光学扫描系统LINOS激光场镜Cambridge MOVIA振镜Cambridge共振型扫描振镜CRSSill Optics激光场镜MRC激光稳定系统Mirrorcle微扫描镜PLS高速多边形扫描仪光束分析测量Duma光束质量分析仪Liquid多功能测量仪Duma自准直仪HighFinesse波长计Bristol激光波长计数据采集处理Licel数据采集系统AlazarTech高速数据采集处理Spectrum高速数字化仪AMPI刺激器Alnair Labs电脉冲发生器Keysight电子测量与分析仪器AnaPico射频微波信号分析与测量红外光谱ARCoptix红外光谱仪PhaseTech二维红外光谱仪NLIR中红外传感器Optogama红外观察仪IR ViewerEMO高性能红外观测仪超快测量整形Swamp Optics超短脉冲测量FemtoEasy超快测量PhaseTech飞秒光谱脉冲整形n2 Photonics飞秒脉冲压缩few cycle超快激光技术Amonics超短脉冲分析仪太赫兹Lytid太赫兹技术光学元器件光栅few cycle超快啁啾镜Wasatch OCT光栅光谱OptiGrate布拉格光栅Spectrogon光栅滤光片Layertec滤波片Alluxa超窄带滤光片Chroma滤光片Andover带通滤光片Acton紫外衰减片Ondax光学元件Spectrogon滤光片Asahi滤光片反射镜镀膜Layertec超快激光反射镜VIAVI高功率大尺寸光学元件镀膜Acton紫外光学元件OptoSigma超级反射镜Optoman超快激光反射镜支架转台Lexitek电动旋转台其他常用光学表面清洁剂First Contact大型仪器显微系统LyncéeTec数字全息显微镜反射式数字全息显微镜DHM-R透射式数字全息显微镜DHM-TFemtonics多光子显微镜Prospective多光子显微镜Lumicks光镊荧光Lumicks m-Trap光镊Lumicks C-Trap光镊自动化机械ISP精密自动化机械设备微纳加工WOP飞秒激光微加工系统加速质谱仪HVE离子束和电子束设备HVE加速器质谱仪HVE离子加速器系统Ionplus加速器质谱仪低能量碳十四小型加速器质谱系统LEA放射性碳定年小型加速器质谱系统MICADAS多核素低能量小型加速器质谱系统MILEA light多核素低能量小型加速器质谱系统MILEA半导体设备Plassys薄膜沉积和蚀刻设备Picosun原子层沉积TSST脉冲激光沉积Sentech等离子刻蚀原子层沉积MBE分子束外延设备光伏设备WEP电化学ECV掺杂浓度检测pv-tools接触电阻测试仪Horiba椭圆偏振光谱仪Sinton少子寿命测试仪Horiba氧/氮/氢分析仪合作自营赋同量子超导纳米线单光子探测北京卓镭超快激光TINY系列Nd:YAG 纳秒激光器BLAZER系列中高功率超快皮秒激光器LAMBER系列纳秒激光器国盾量子科学仪器国盾量子高亮度纠缠源国盾量子高速近红外单光子探测器国盾量子高速皮秒脉冲激光器国盾量子可见光波段单光子探测器SURISE热风式大气湍流模拟器SURISE液晶大气湍流模拟器SURISE夏克-哈特曼波前传感器SURISE全息光镊系统SURISE飞秒激光频率梳SURISE高性能激光器SURISE高时间对比度TW/PW激光系统SURISE数字微镜阵列DMDSURISE大气光学参数测量仪SURISE光学仪器专用干燥柜解决方案自适应光学多光子显微成像光学相干层析成像OCT大气湍流大气激光雷达量子光学合作伙伴 首页 行业新闻 Light | 散斑衍射断层扫描实现纳米级厚组织成像 Light | 散斑衍射断层扫描实现纳米级厚组织成像 撰稿 | 蔡淼 导读 近日,来自麻省理工学院的Zahid Yaqoob团队,提出了一种新的散斑衍射断层扫描技术,实现了500nm横向分辨率和1μm轴向分辨率的生物体厚组织成像,对生物成像领域的发展具有重要意义。该文章发表在国际顶尖学术期刊《Light: Science & Applications》,题为“Mapping nanoscale topographic features in thick tissues with speckle diffraction tomography”。 研究背景 定量相位成像技术(quantitative phase imaging, QPI)被广泛用于描绘透明细胞和薄组织样本的结构与动态特性。QPI作为一种无标记成像方法,对许多生物医学研究具有重要作用。光学衍射断层扫描(optical diffraction tomography,ODT)是QPI的扩展技术,可通过绘制三维折射率(refractive index,RI)图来实现生物样品的体成像。 对生物体内厚组织进行成像的能力对于许多前沿生物学研究以及临床医学应用至关重要。然而,现有的大多数QPI方法由于模型和设备的限制,仍然很大程度上局限于对细胞和薄组织切片的成像。QPI技术实现厚组织成像面临如下几个主要困难:首先,需要实现宽视场反射模式测量几何结构;其次,需要开发一个综合逆散射模型来描述较厚的非均匀介质的反向散射场的时间色散和空间像差; 第三,需要抑制多重散射背景以隔离源自特定深层的信号。如果能解决这些问题,将推动生物成像技术的进一步发展,也对相关的临床医学应用具有极其重要的意义。 创新研究 在本研究中,研究人员提出了一种新的基于反射模式的三维QPI方法,称为散斑衍射断层扫描(speckle diffraction tomography,SDT)。该方法能够量化多个散射样品中与深度相关的 RI 变化和结构动力学特征,同时提供衍射限制的横向分辨率和亚微米轴向分辨率(图一)。通过精确解决厚样品的逆散射问题,SDT 扩展了当前动态散斑QPI方法的成像深度, 这一进步使SDT能够对具有多重散射和像差的厚组织样本进行成像。SDT 考虑了时空相干和样本引起的像差,从而能够得到时空域反射场的四维 (4D) 点扩散函数 (point spread function,PSF)(图二)。4D-PSF 进一步使该方案能够逐层恢复样本的平均折射率,对于反射模式 QPI 系统来说这是不可能实现的。 研究人员使用 SDT 系统首先对厚度接近三个散射平均自由程的厚散射介质后面的红细胞进行成像。高灵敏度和高速成像能力使此方案能够量化红细胞膜波动(图四)。为了证明其在体内研究的可行性,研究人员对离体 Sprague Dawley (SD) 大鼠眼内的角膜结构进行了成像,横向分辨率约为 500 nm,轴向分辨率约为 1 µm,并描绘了每个角膜层的 RI 值。使用此方案,相距 4 μm 的 Dua 膜和 Descemet 膜的表面轮廓都能够得到清晰解析,并且能够以纳米级灵敏度绘制它们的轮廓(图四)。 这一研究突破了现有QPI成像技术的瓶颈,对于生物成像与临床医学应用具有极其重要的作用,具有极高的学术与应用价值。 图一:厚样品成像的 SDT 原理图解。(a)SDT系统示意图。RD:旋转扩散器;PBS:偏振分束器;OL:物镜。zS表示样品顶面的轴向位置。τR 是参考波的到达时间,可以通过同时移动参考物镜-反射镜组件来调整。相应的箭头表示 zS 和 τR 的正值方向。 右侧显示了厚多层样品内RI失配引起的焦点偏移 Δf。(b)单层中产生的相移关于归一化后的横向动量的函数的图示。图中绘制了不同层厚度(50μm、100μm、150μm 和 200μm)的相移曲线。 图二:使用SDT模型对PSF和OTF进行数值模拟。(a)数值模拟研究的测量方案示意图。点散射体位于单层介质内深度 d 处,平均 RI 值为 1.37。由于焦点偏移,通过将样本向上移动到轴向位置 zS 来使点散射体聚焦。 (b)位于 d = 0 和 400 µm 处的点散射体的点扩散函数。(c),(d)k 空间中点散射体位于 d = 0 μm 和 400 μm 且 τR = 0 和 230 fs 时的系统光学传递函数的幅度。(e),(f)实空间中的点扩散函数,通过分别对(c)和(d)中所示的光学传递函数进行傅里叶逆变换获得。 图三:散射组织模型底部红细胞的定量相位成像。 (a)由三层组成的组装样品的示意图:散射组织模型层(L1)、盖玻片层(L2)和悬浮红细胞的缓冲溶液层(L3)。 (b)与样本层 L1、L2 和 L3 相关的四个界面在 (zS,τR) 空间中的 PSF 位置。(c)-(d)检索的三层的 RI 值和厚度。(e)根据 (b) 中所示的 (zS,τR)关系进行参考路径长度校正的样品的归一化强度横截面图像(左)和平均强度横截面曲线(右)。(f)L3 层底部界面红细胞的定量相图。 比例尺:10 µm。(g)RBC 1 的高度图,如 (f) 所示。比例尺:4 µm。(h),(f)(白色虚线框)和背景(白色实线框)中标记的三个红细胞的 RMS位移。每个框中的红线代表中位数,而框的下边界和上边界表示第一和第三四分位数。虚线两端代表1.5个四分位数范围。红色标记代表超出 1.5 个四分位数范围的异常值。两个样本 t 检验表明,三个红细胞的 RMS 位移与背景之间存在统计显着差异 (***p<0.001)。 图四:固定SD大鼠角膜组织的体成像。(a)大鼠角膜组织的截面强度图像,具有对数刻度颜色映射(单位为 dB)。左侧显示各层的平均 RI 值。(b)深度为 155 至 185 µm 的放大图像,具有线性刻度颜色映射。与 Dua 膜和 Descemet 膜相关的两个不同层被清楚地识别并分别标记为 L1 和 L2。 (c)-(h)L1 层和 L2 层的幅度、相位和高度图。比例尺:10 µm。(i)-(j),分别是 3D 反卷积之前和之后深度 d=133 µm 处的振幅图像。比例尺:10 µm。(k),沿 (i)-(j) 中白色虚线的横截面。蓝线:3D反卷积之前;红线:3D 反卷积后。 论文信息 该文章发表在国际顶尖学术期刊《Light: Science & Applications》,题为“Mapping nanoscale topographic features in thick tissues with speckle diffraction tomography”,Sungsam Kang为论文的第一作者,Renjie Zhou和Zahid Yaqoob为本文的共同通讯作者。 论文地址 https://www.nature.com/articles/s41377-023-01240-0 免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间联系我们,我们将协调进行处理,最终解释权归旭为光电所有。 无标记定量相位三维显微成像的新范式——光强传输衍射层析 Light杰青作者优秀论文展(8) 量子级联激光器QCL应用大全 Light杰青作者优秀论文展(6) Laser Quantum飞秒激光器venteon Precision Laser Scanning多边扫描仪 Light杰青作者优秀论文展(7)