Light Adv. Manuf. | 全息显微术在半导体测量中的应用
导 读
在半导体制造业中,光学晶圆计量技术的技术背景非常广泛。它包括光刻技术,这是一种使用光来转移一个图案到晶圆上的技术;以及掩膜和晶圆对齐技术,确保不同层的电路图案正确对齐。随着制程节点的不断缩小,光学测量技术必须发展出更高的分辨率和精度,例如使用先进的光学系统、多波长测量和复杂的图像处理算法。这些技术的发展对于维持和提升集成电路制造的精度和效率至关重要。
然而,随着集成电路特征尺寸的持续减小,对覆盖计量工具的精确性和准确性需求也相应增加。这是因为更小的特征尺寸意味着更严格的容错标准,任何微小的误差都可能导致电路功能失效或性能下降。因此,发展能够在亚纳米级别上提供精确测量的工具变得至关重要,以确保集成电路的高质量和可靠性。覆盖计量工具的提升,特别是在精度和分辨率方面,是实现这一目标的关键。
鉴于此,荷兰阿姆斯特丹自由大学的Tamar van Gardingen-Cromwijk在Light:Advanced Manufacturing上发表了题为“Non-isoplanatic lens aberration correction in dark-field digital holographic microscopy for semiconductor metrology”的研究文章。
本文主要探讨了在半导体制造业中应用暗场数字全息显微术来提高晶圆计量的精度。文章重点研究了如何通过计算校正非等距成像系统中常见的像差,以实现在可见光到近红外区域的高分辨率成像,从而更准确地测量集成电路中的层间错位。这种技术的发展对于提升集成电路制造的精度和效率至关重要。
理论分析
基于奇异值分解的像差校正
暗场数字全息显微术
实验结果
图3:可见光波段像差校正的实验结果
总结与展望
论文信息
Tamar van Gardingen-Cromwijk, Sander Konijnenberg, Wim Coene, Manashee Adhikary, Teus Tukker, Stefan Witte, Johannes F. de Boer, Arie den Boef. Non-isoplanatic lens aberration correction in dark-field digital holographic microscopy for semiconductor metrology[J]. Light: Advanced Manufacturing 4, 41(2023).
免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间联系我们,我们将协调进行处理,最终解释权归旭为光电所有。