计算光学成像技术浅谈
中国科学院上海光学精密机械研究所
人类感知客观世界的信息,有90%来源于视觉[1],而光学成像技术的发展则大大扩展了人类的视觉能力,使之能上观百亿光年之外的天体运行、下察比头发丝直径还小万倍的分子结构。事实上,只要大家看看自己的智能手机,就能意识到光学成像技术与我们工作生活相关的密切程度。计算光学成像是光学成像与最优化算法、人工智能、信息论等多学科交叉研究方向,吸引着越来越多学术和工业界人员的兴趣。但我们在与同行交流的过程中,也发现有不少人认为这是数字图像处理技术。为了澄清这些误解,本文将简单介绍计算光学成像技术的基本概念、内涵和优势。
计算光学成像,顾名思义,是把“计算”融入到光学图像形成过程中任何一个或者多个环节的一类新型的成像技术或系统。光学图像的形成与场景/物体的照明模式、系统的光学传递函数、像感器的采样三个因素息息相关。计算通常以编码的形式体现在这三个环节当中,对系统的物面、光瞳面和像面(或其共轭面)上的光场进行编码调制,形成编码照明、编码孔径、编码像感(图1)。
在硬件上,这些编码通常可以专门制作编码板(如微透镜阵列、微偏振片阵列)或者更灵活的可编程控制的空间光调制器(如DMD、LCOS、MEMS、LED阵列),甚至利用光波本身的物理属性(如衍射、相干叠加)来实现;在功能上,编码调制可以作用于光场的光强、相位、偏振、光谱等要素。显然,这些编码器件和函数的引入会导致几何光学意义下光学成像系统“点到点”物像关系不再满足。也即是说,在像感器上所成的像并非“所见即所得”的几何光学像,而是经过“编码”后的光强分布,因而需要用适当的数学算法来“计算重建”场景/物体的图像。因此,计算光学成像系统的设计需要根据具体的成像任务在光学和算法两方面进行联合优化。而数字图像处理技术仅对传统光学成像系统获取到的图像进行后处理(如去噪、像素超分、背景虚化)以获得更好的视觉效果。
通过光学与算法的联合优化设计,计算光学成像技术的优势是全方位的(图2)。根据具体的成像任务,计算光学成像技术能扩展成像要素,对光场的相位/传播方向、相空间、偏振态、光谱、时间等参量进行成像;也能提升成像性能,可实现分辨率、视场、景深和动态范围的提升;也能通过去除透镜等方式简化成像系统;甚至在低光照、强散射、存在遮挡物等传统光学成像技术难以应对的环境里,都能获得出色的表现。
其中,x表示待测物体,H(・)表示整个成像系统的编码探测过程(包含各类噪声),y为实际探测结果。使用算法重构图像即通过逆向过程实现的推理,这是一个典型的逆问题。
由于探测过程不可避免的存在信息丢失,上述逆问题往往是病态的,这将导致解的不唯一性,即直接根据y无法唯一确定一个x。
常见的逆问题求解算法可分为以下四类:
由于逆问题的病态性,满足探测信号约束(也称为数据拟合项)的结果有很多,通过手动设计正则项引入诸如稀疏、平滑、支持域等先验约束,可以从众多可行解中挑选“最优解”[2]。最小二乘法、压缩感知算法等都属于此类方法。
下面,我们将列举若干典型的计算光学成像技术。
参考文献
2. Bertero M, Boccacci P, De Mol C. Introduction to inverse problems in imaging[M]. CRC press, 2021.
3. Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging[J]. Optica, 2019, 6(8): 921-943.
4. Wang F, Wang C, Deng C, et al. Single-pixel imaging using physics enhanced deep learning[J]. Photonics Research, 2022, 10(1): 104-110.
5. Luo Y, Zhao Y, Li J, et al. Computational imaging without a computer: seeing through random diffusers at the speed of light[J]. eLight, 2022, 2(1): 1-16.
6. 郑珊珊, 杨婉琴, 司徒国海. 计算光学成像在散射中的应用[J]. 红外与激光工程, 2019, 48(6): 603005-0603005 (15).
7. Godard C, Mac Aodha O, Firman M, et al. Digging into self-supervised monocular depth estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 3828-3838.
8. Ozdemir A, Polat K. Deep learning applications for hyperspectral imaging: a systematic review[J]. Journal of the Institute of Electronics and Computer, 2020, 2(1): 39-56.
9. Tseng E, Colburn S, Whitehead J, et al. Neural nano-optics for high-quality thin lens imaging[J]. Nature communications, 2021, 12(1): 1-7.
10. Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature photonics, 2019, 13(1): 13-20.
11. 陈钱, 左超. 计算光学成像技术与应用专题. 红外与激光工程, 2019, 48(6).
12. 戴琼海, 赵建林, 司徒国海, 方璐. 计算光学成像专题. 光学学报, 2020, 40(1).
免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间联系我们,我们将协调进行处理,最终解释权归旭为光电所有。