Menu

Menu

大视场航空相机光学系统设计

光行天下 2022-10-03 23:09 Posted on 四川

摘要:针对航空相机复杂的使用环境以及需在高速运动中进行高分辨率成像的特点, 设计了一种大视场航空照相机光学系统。该系统光学结构采用双高斯准对称结构形式,通过双成像模块光学拼接扩大视场角,调整最后一片透镜实现内置调焦,且通过控制地物反射镜的3种工作模式,分别实现航空相机垂直照相、自动调焦及前向像移补偿功能,避免了航拍过程中温度、气压、航高等环境条件变化时引起的图像质量大幅下降,确保整个视场内成像质量不受影响。该光学系统设计实现了全视场无渐晕, 全视场最大畸变<0.5‰,在91lp/mm处MTF接近衍射极限,物镜在全视场范围内成像质量一致。通过实验室及航拍试验验证,该光学系统具有成像清晰、视场大、可靠性高、体积小、质量轻等优点,满足了航空相机在比较复杂环境下清晰成像的要求。
关键词:航空相机;高分辨率;大视场;光学系统;自动调;自动像移补偿
引言
航空侦察作为一种侦察手段,自产生以来一直是军事侦察领域的重要组成部分,设计高分辨率、大视场侦察相机已经成为航空侦察相机技术发展的必然趋势。然而图像传感器的尺寸却受到工艺的限制不可能做得很大,所以图像传感器的尺寸已成为限制相机视场的主要因素。视场拼接技术是解决大视场问题的关键。目前视场拼接主要有成像器件机械拼接、多镜头多面阵拼接和单镜头多面阵拼接。成像器件机械拼接就是在像面上将多片图像传感器紧密的排列起来,机械拼接的优点在于采用机械拼接的相机光学系统相对比较简单,缺点是成像元器件成品都有封装结构,具有一定的几何尺寸,实际像元大于有效像元,因此直接将2个成像芯片拼在一起中间会产生缝隙,在成像时产生拍摄盲区,丢失图像信息。

为了实现无缝拼接,传统方法是拆除单个成像芯片封装,将有效像元顺次拼接,但这种方法工艺复杂,成本高,很少被采用。多镜头多面阵成像器件拼接是每片成像芯片,使用一套独立的光学系统,通过物理“捆绑”构成具有较大成像面积的等效相机系统,其优点是实现简单,缺点是结构庞大。单镜头多面阵成像器件拼接是多片成像器件使用同一套镜头,由多面阵成像芯片共同构成焦平面,因此光学系统较为复杂,对各面阵成像芯片的安装精度要求非常高,成像器件片数越多,装调困难较大,光学系统像质还要受多种因素的影响而降低。因此在设计时,要求光学系统的像质尽可能达到或接近衍射极限,还要考虑环境温度、气压、高度等因素的变化对光学系统的影响,在设计时应采取相应的措施消除或减弱对像质的影响。

1. 光学系统设计

1.1 光学系统设计指标
光学系统设计指标如下:
照度范围: 4 000 lx ~ 100 000 lx;
光谱范围: 0.48 μm~0.75 μm;
探测器靶面尺寸:36.168 mm×24.112 mm;
像元尺寸:5.5 μm;
组合视场:20.5°×6.9°;
相对孔径:1:4;
全视场最大畸变:<0.5‰;
光学系统传递函数:MTF≥0.5(全视场)。

1.2 焦距的确定

光学系统焦距长短要根据地面分辨率指标要求确定。垂直型航空相机地面分辨率指标RG、航拍高度H、选用的CCD芯片像元尺寸d及焦距之间的关系可根据下式确定:
RG/H=n×d/f′ (1)
式中:f′为相机焦距;RG为地面分辨率;n为像元数;H为飞行高度;d为像元尺寸。
依据产品装调水平、系统使用环境及设计经验,一般n在1.5~3之间选择。
从公式(1)可以看出,相机地面分辨率与镜头焦距、像元尺寸、像元数有关。增大镜头焦距,相机重量随之增加;而减小像元尺寸会导致成像灵敏度降低,因此确定系统焦距时,应根据系统技术指标及使用条件综合考虑。
1.3 视场角的确定
光学系统视场角的大小由物镜焦距和接收器件的尺寸决定。单片成像芯片成像不满足视场角要求,为了扩大视场,采用双片成像器件进行拼接。视场角计算公式为
2ω=2arctany’/f’   (2)
式中:ω为半视场角;y′为CCD器件1/2尺寸;f′为镜头焦距。

光学系统成像组件拼接视场示意图如图 1所示,拼接后的视场角可以增加近1倍。单片成像芯片视场10.36°×6.9°,双片成像芯片拼接后的视场20.5°×6.9°。

大视场航空相机光学系统设计

图1. 拼接视场示意图
1.4 光学组件结构形式
光学组件由窗口玻璃、地物反射镜、摄影物镜、像方反射镜、分光棱镜、像面等组成。为减小相机外形尺寸,反射镜采用折叠光路,最后一片透镜用于内调焦。采用双高斯准对称结构形式校正轴外像差,如彗差、垂轴色差、畸变等,用厚透镜校正像散、场曲。为了避免胶合镜在胶合过程中对面型的影响,设计中将胶合镜分离为单透镜,这样有利于成像质量的提高,并且减少了胶合工序。单透镜材料选用折射率较高、色散较小、工艺性较好的玻璃。在满足系统校正轴外像差要求的同时,很好地校正了系统的带球差、二级光谱、位置色差等,保证轴上点和轴外点没有太大的差别,使整个视场内成像质量比较均匀,以利于提高整个系统的成像质量。
光学系统结构形式如图 2所示。地面景物光线通过光学窗口、地物反射镜进入成像物镜,再通过折叠光路的像方反射镜及分光镜分别成像在大面阵CCD1靶面和CCD2靶面上,通过光学拼接形成一幅拼接图像,从而扩大视场。通过光电转换,实时获取图像信息。

大视场航空相机光学系统设计

图2. 光学结构图
大视场航空相机光学系统设计图3.自准直自动对焦原理图
……
6. 结论
大视场航空相机光学系统,采用双高斯准对称结构形式,通过双成像模块光学拼接扩大视场角,调整最后一片透镜实现内置自动调焦,控制地物反射镜实现垂直照相、自动调焦及前向像移补偿3种功能模式的转换。该光学系统实现了全视场无渐晕, 在91 lp/mm处MTF接近衍射极限,物镜在全视场范围内成像质量一致。通过实验室及室外航拍试验验证,该光学系统满足设计指标要求。
鉴于篇幅,本文仅为节选(应用光学 第40卷 第6期)

免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间联系我们,我们将协调进行处理,最终解释权归旭为光电所有。